以UHPC材料连接的预制柱抗震性能试验研究

彭超凡¹ 郑七振¹ 龙莉波² 陈 刚¹ 1.上海理工大学环境与建筑学院 上海 200093; 2.上海建工二建集团有限公司 上海 200080

摘要:研究了在以UHPC(超高性能混凝土)材料后浇条件下,不同搭接长度工况下预制柱的破坏形态、变形能力、耗能能力以及承载能力,得到了基于UHPC材料、适宜的钢筋搭接长度。通过对6组钢筋混凝土柱的低周反复加载试验,结果表明:相较于整浇柱,UHPC后浇柱的破坏形态改变为底部榫头翘起,承载能力比整浇柱提高3.1%~31.9%,同时延性系数大体相似。结论:搭接长度为10d(纵筋直径)的UHPC后浇柱已达到混凝土整浇柱的性能要求。 关键词:UHPC材料;预制柱;钢筋搭接长度;抗震性能;低周反复荷载试验 中图分类号:TU528.31 **文献标志码:**B **DOI**: 10.14144/j.cnki.jzsg.2016.12.027

Study on Seismic Performance of Precast Column Connected with UHPC Material

PENG Chaofan¹ ZHENG Qizhen¹ LONG Libo² CHEN Gang¹ 1. School of Environment and Architecture, University of Shanghai for Science & Technology Shanghai 200093; 2. Shanghai Construction No.2 (Group) Co., Ltd. Shanghai 200080

UHPC(超高性能混凝土)是一种高强度、高韧性、 低孔隙率的超高强水泥基材料,具有自流平的浇筑性能, 同时又因其具有优异的力学性能和耐久性,近年来日益受 到建筑界的关注。

本文以钢筋绑扎搭接连接方式为基础,使用超高性能 混凝土UHPC作为后期浇筑材料,对预制混凝土装配柱的搭 接长度进行梯度式系统研究,通过不同搭接长度的后浇柱 与混凝土整浇柱的性能比较,确定UHPC后浇方式是否能够 保证试件的整体性,是否具有足够的抗震性能,以此得到 更短搭接长度的绑扎搭接方式,这对预制装配式结构的施 工质量、施工便利性和广泛应用有着非常重大的意义^[11]。

1 试验概况

1.1 试件设计

本次试验共设计了6组试件,其中包括5组UHPC材料 后浇预制柱和1组混凝土整浇柱。UHPC使用上海罗洋新材 料科技有限公司的Tenacal T180型号材料。试件柱主体尺寸 为300 mm×300 mm×1 080 mm,后浇柱的预制部分和整浇 柱的混凝土强度等级为C40,设计轴压比为0.1,保护层厚 度取30 mm。

预制顶梁为柱传递横向荷载,尺寸为400 mm×

```
基金项目:上海高等职业教育质量提升计划项目(2015-01-001)。
作者简介:彭超凡(1991-),男,在读硕士。
通信地址:上海市杨浦区军工路516号(200093)。
收稿日期:2016-11-01
```

400 mm×600 mm;预制底梁尺寸为400 mm×400 mm× 900 mm,设计时在底梁两端预留直径为70 mm的PVC孔, 主要用于地锚螺栓与地面连接,起固定作用。预制试件 U-1~U-5通过柱底部与底梁预留纵筋搭接,以箍筋约束, 使用UHPC材料对此区域进行浇筑;梁、柱纵向钢筋采用 Ⅲ级带肋钢筋,箍筋采用 Ⅰ 级光圆钢筋,试件相关参数和 配筋详见表1^[2]。

表1 试件参数

构件 编号	构件 类型	搭接长 度/mm	截面尺寸/ (mm×mm)	混凝土 等级	纵筋配筋/ mm	箍筋配筋/ mm
U-1	UHPC后浇	480	300 × 300	C40	4C16	ø 8@100
U-2	UHPC后浇	400	300 × 300	C40	4C16	ø 8@100
U-3	UHPC后浇	320	300 × 300	C40	4C16	ø 8@100
U-4	UHPC后浇	240	300 × 300	C40	4C16	ø 8@100
U-5	UHPC后浇	160	300 × 300	C40	4C16	\$ \$@100
PC-1	混凝土整浇	480	300 × 300	C40	4C16	ø 8@100

为了保证预制段与后浇段的充分接触,在预制柱端、 梁端搭接面设置凹槽和粗糙面,凹槽角度取30°,粗糙面 凹凸深度为6mm。试件尺寸构造详见图1。

1.2 试验装置与加载程序

试件加载装置如图2所示,试验中恒定轴压由安装在 反力架平衡梁上的竖向千斤顶施加,一次性加载到预定值 172 kN,并在试验过程中实时保持恒定。使用MTS水平作 动器在试件的柱自由端实施往复水平拉压荷载,作动器与 柱顶部通过连接件连接。

反复试验荷载的加载程序采用荷载-位移混合控制方法;在结构构件达到屈服荷载前,采用荷载控制,以5 kN

图1 试件尺寸及钢筋构造

图2 试件加载装置示意

为一级,每次荷载循环1次,试验柱的屈服点按受拉钢筋 是否达到屈服应变来确定。柱纵筋受拉屈服时,顶梁加载 点处的水平向位移即为屈服位移。在结构构件达到屈服荷 载后,采用屈服位移的倍数点作为回载控制点,每级循环 3次,直至柱承载力下降到计算正截面受弯极限承载力的 85%左右停止。

1.3 测点布置

1.3.1 位移测点布置

MTS水平作动器的荷载与试件位移通过传感器由计算 机自动采集,并实时控制加载过程,绘制P-Δ曲线。为与 MTS采集的柱顶水平位移进行校核,在与柱顶水平力加载 点同高的位置布置1个位移计。另外,在底梁两端各布置1 个位移计,观测梁两端的竖向位移。

1.3.2 应变测点布置

分别在弯矩最大的柱纵筋和箍筋上粘贴电阻应变片并 进行采集,以分析判断柱子的受力状态。

2 试验结果及分析

2.1 破坏特征

为了方便解释试验的破坏过程, 定垂直于受力方向的

柱面为正反面,平行于受力方向的柱面为前后侧面,试验 过程描述如下^[3-6]:

1)混凝土整浇柱的试验过程中,当加载到30 kN时, 试件正反面出现初始水平裂缝;随着加载至40 kN,柱正 反面的水平裂缝向柱侧面斜向延伸并不断加宽,越靠近柱 底部,裂缝的倾斜角度越大;试验继续反复加载,正面柱 脚处出现纵向裂缝,柱底部纵向钢筋受拉屈服,混凝土压 碎,部分纵向受压钢筋压屈外鼓,试件最终破坏均发生在 柱底部。

2) UHPC后浇柱的试验过程中,当加载到20~30 kN 时,试件初始裂缝出现在后浇接缝与柱底部;继续加载, 试件1/3高度处混凝土出现水平裂缝;加载到50 kN时,1/3 高度处混凝土裂缝较后浇接缝处发展更为明显,裂缝宽 度迅速加宽;持续加载,由于UHPC材料的高强度性能, UHPC后浇段本身不会破坏,从而导致混凝土底座侧面出 现竖直裂缝,底座侧面拉扯出横向及斜向裂缝,破坏时柱 底榫头翘起现象明显。

对比混凝土整浇与UHPC后浇试件的破坏情况,可以得知如下区别:

1)初始裂缝出现位置不同:整浇柱开裂位置处于距柱 底1/3范围,而后浇柱由于黏合力不够,裂缝最开始均出现 在后浇接缝处。

2)裂缝性质不同: 混凝土整浇柱第一批水平裂缝即为 最终主裂缝, 而混凝土后浇柱接缝处裂缝虽产生时间早, 但后期无明显变化, 仍以混凝土裂缝为主。

3)整体破坏形态不同: 混凝土试件破坏均发生在柱本身,而UHPC试件由于材料的高强度,UHPC部分约束能力 很强不会破坏,从而导致底座混凝土被压碎,同时由于拉 拔作用,底座会产生斜向裂缝及竖直裂缝。

4)最终破坏形式不同: 混凝土柱最终破坏形式为柱底 部混凝土压碎,而UHPC试件破坏形式为榫头翘起破坏。

2.2 *F-*△滞回曲线

6个试件的滞回曲线如图3所示。

1)6个试件的滞回曲线形状、大小及演变过程基本相 似,滞回环均较为饱满。

2)相比于混凝土整浇试件,5个UHPC试件的滞回曲 线捏缩现象均比较明显,滞回环形状呈弓形,表示试件 受到一定的滑移影响,同时滑移量随搭接长度加长略有增 大。

3)从滞回环的面积和饱满程度上可以判断,UHPC试件的耗能能力是优于混凝土整浇试件的,随着UHPC搭接长度逐渐提高,试件的整体耗能能力都在不断提升,且均好于混凝土整浇试件。

4) 搭接长度为10d的UHPC试件的耗能能力已经与混凝土整浇试件相当。

2.3 骨架曲线主要特征点及延性系数

试件的荷载位移骨架曲线如图4所示[7]。

图4 骨架曲线

由图4可知:混凝土整浇试件与UHPC后浇试件的初始 刚度基本一致,屈服荷载、变形能力大体相似,UHPC后 浇试件的最大荷载和极限荷载均大于混凝土整浇试件,试 件整体耗能性能均较完好。

6个试件的屈服荷载、屈服位移、最大荷载、最大位 移、破坏荷载、极限位移、延性系数等相关数据如表2所 示。

1)整浇试件与预制试件的屈服荷载大体相当, 屈服位移也都保持在20mm左右的范围内。

2) UHPC后浇试件的最大荷载均大于混凝土整浇试件,荷载增大范围在3.1%~31.9%之间。

3)除搭接长度30d的UHPC试件的极限位移与混凝土 整浇大致相等外,其余UHPC试件均大于混凝土整浇试件 21%左右。

4) 根据试件的延性系数可以看出, UHPC试件的变形

表2 试件骨架曲线主要特征点试验结果与延性系数

试件编号	屈服荷 载/kN	屈服位 移/mm	最大荷 载/kN	最大荷载 位移/mm	极限荷 载/kN	极限位 移/mm	延性 系数
混凝土整浇	57.0	18.1	67.8	32.4	59.6	52.1	2.88
UHPC160	60.4	18.0	69.9	58.6	65.9	62.9	3.49
UHPC240	60.0	18.4	89.4	41.7	78.9	64.3	3.49
UHPC320	61.4	22.2	78.1	34.0	68.3	60.6	2.73
UHPC400	65.0	20.8	88.2	32.5	75.7	62.9	3.02
UHPC480	65.0	16.2	89.3	33.7	76.0	53.1	3.09

能力均好于混凝土整浇及后浇试件,搭接长度10d及15d的 试件延性最高,整体UHPC试件延性与混凝土整浇试件相 似或好于混凝土整浇试件。

3 结语

1)由于UHPC的高强度约束作用,混凝土柱最终破坏 形式为柱底部混凝土压碎,而UHPC试件破坏形式为榫头 翘起。

2)试件破坏过程中,纵向受拉钢筋屈服,受压钢筋 压屈,均保证了钢筋性能的充分发挥和力的完整传递,且 UHPC试件的承载能力均好于混凝土整浇试件。

3)从试件的延性系数可以看出,UHPC试件的变形 能力与混凝土整浇试件基本一致,搭接长度为160 mm及 240 mm的试件延性最高,整体延性相似或好于混凝土整浇 试件。

4)根据试件的滞回曲线可以看出,搭接长度为10d的 UHPC试件耗能能力已经与混凝土整浇试件相当,试件整 体的耗能能力均好于混凝土整浇试件。

5)根据以上试验数据,搭接长度为10d的UHPC后浇 试件已经具备混凝土整浇试件的性能,可以作为代替整浇 及灌浆套筒工艺的选择。

〖参考文献〗

- [1] 韩超,郑毅敏,赵勇.钢筋套筒灌浆连接技术研究与应用进展[J].施工 技术,2013(21):113-116.
- [2] 中国建筑科学研究院.JGJ 107—2010 钢筋机械连接技术规程[S].北 京:中国建筑工业出版社,2010.
- [3] 罗青儿,仟朋,文瀼.装配整体式钢筋混凝土框架柱榫式接头的试验研究[]].工业建筑,2008(10):48-52.
- [4] 张兴虎,王建,潘树宾,等.套筒浆锚连接柱的抗震性能试验研究[]].西 安建筑科技大学学报(自然科学版),2013(2):164-170.
- [5] 陈俊,方园,荣晃,等.不同连接方式下预制钢筋混凝土短柱抗震性能 试验研究[]].湘潭大学自然科学学报,2014(3):28-34.
- [6] 陈俊,肖岩,尹齐.预埋波纹套管的钢筋-高强浇筑料黏结锚固性能 试验研究[J].建筑结构学报,2015(7):140-147.
- [7] 中国建筑工业出版社.JGJ 101—1996 建筑抗震试验方法规程[S].北 京:中国建筑工业出版社,1997.